• Home   /  
  • Archive by category "1"

Geometrisches Mittel Einfaches Beispiel Essay

Bestehen die Merkmalswerte aus Wachstums- oder Aufzinsungsfaktoren, die über unterschiedliche Perioden hinweg betrachtet werden, so ist nicht das arithmetische, sondern das geometrische Mittel zu verwenden. Zum Verständnis folgendes Beispiel.

Beispiel zum geometrischen Mittel

Hier klicken zum Ausklappen

Beispiel 39:
Der Kontostand des Studenten D entwickelte sich in den letzten Jahren wie folgt (alle Beträge auf € umgerechnet)

Jahre 1998 1999 2000 2001 2002 2003
Kontostand100010501020120012001300

Berechne

  • die Wachstumsraten der einzelnen Jahre und
  • die durchschnittliche Verzinsung insgesamt.

Die einzelnen Verzinsungen lauten für die einzelnen Jahre

Jahre 1998-1999 1999-2000 2000-2001 2001-2002 2002-2003
Verzinsung0,05-0,02860,176500,0833

So rechnet man beispielsweise $\ ({1200 \over 1020} -1) \cdot 100=17,65$% für den Zeitraum von 2000 bis 2001. Wie lautet nun die Wachstumsrate insgesamt im Jahresdurchschnitt? Wenn ein Konto von 1.000 € auf 1.300 € in fünf Jahren wächst, dann sind das $\ ( \sqrt[5]{1300 \over 1000} -1)\cdot 100 = 5,3874$% pro Jahr. Dies verifiziert man leicht durch die Probe der Kontostände, die sich ergeben bei einer Rendite von 5,3874 % pro Jahr:

Jahre 1998 1999 2000 2001 2002 2003
Kontostand100010541111117012341300

Formel des geometrischen Mittels

Hier klicken zum Ausklappen Zwei Wege zur Bestimmung des geometrischen Mittels:
  • direkter Weg Man erhält also die mittlere Wachstumsrate auf direktem Wege durch die Formel $$\ \overline x_g = ( \sqrt [n]{K_n \over K_0} -1 ) \cdot 100 $$

  • indirekter Weg (= geometrisches Mittel) Über die einzelnen Jahresrenditen selbst gelangt man aber auch zum Ziel durch das geometrische Mittel $\ \overline x_g $
    $$\ \overline x_g= ( \sqrt [n]{x_1 \cdot x_2 \cdot ...\cdot x_n} -1 ) \cdot 100 $$
Hier klicken zum Ausklappen Merke: Die einzelnen $\ x_i $ in der Wurzel sind die Aufzinsungsfaktoren, nicht die Renditen selbst:
  • bei einer Rentabilität von 5 % (also 0,05) ist der Aufzinsungsfaktor 1,05,  
  • bei einer negativen Rendite von –2,9579 % lautet der Aufzinsungsfaktor 0,970421,  
  • wenn der Kontostand gleich bleibt wie zwischen 2001 und 2002, ist die Rendite 0 %, der Aufzinsungsfaktor also 1,0.

Angewendet auf das Beispiel 39 rechnet man damit:
$\ \overline x_g=( \sqrt [5]{1,05 \cdot 0,97143 \cdot 1,17647 \cdot 1 \cdot 1,0833}-1) \cdot 100 = 5,387 $ %

Video zum geometrischen Mittel

Schauen wir uns abschließend ein Lernvideo zum geometrischen Mittel an:

Video: Geometrisches Mittel

Nehmen wir einmal an, uns lägen von einer Untersuchung der Wassertiefe an einem Deich genau zwei Merkmalswerte vor: Die Wassertiefe (1,85 m) sowie die Haarfarbe der Person, welche die Messung vorgenommen hat (blond). Intuitiv wird uns klar sein, dass sich mit dem Wert für die Wassertiefe deutlich mehr anfangen lässt, als mit der Angabe der Haarfarbe. So könnte man den Wert etwa mit dem einer vorherigen Messung vergleichen und berechnen, um wie viel Prozent der Wasserstand gefallen oder gestiegen ist. Kalkulieren könnte man auch die Differenz zur Höhe des Deichs und damit die Höhe, um die das Wasser noch steigen könnte, bevor eine kritische Marke erreicht wird. Im Hinblick auf die Haarfarbe könnten wir dagegen lediglich einen Vergleich mit den Aufzeichnungen früherer Messungen anstellen und ermitteln, ob die Prüfer stets blond waren, oder ob auch andere Haarfarben vertreten sind.

Der Informationsgehalt des Merkmals “Wassertiefe in m” ist offenbar deutlich größer als der Informationsgehalt des Merkmals “Haarfarbe”. Diese zentrale Eigenschaft von Merkmalen bzw. Variablen wird in der Statistik als deren Skalenniveau bezeichnet. Da die Durchführbarkeit einer Vielzahl von Analysen direkt oder indirekt davon abhängig ist, dass die vorhandenen Daten ein bestimmtes Skalenniveau erreichen, ist dessen fehlerfreie Bestimmung eine unerlässliche Voraussetzung für die Anwendung dieser Verfahren. Für die Zwecke unserer Statistik-Blogserie hier im “Wissenschafts-Thurm” wird eine Unterscheidung in die nachfolgend dargestellten drei Skalenniveaus ausreichend sein.

Nominalskalenniveau

Bei nominalskalierten Daten handelt es sich um Daten, die in keinerlei natürliche Reihenfolge gebracht werden können – beispielsweise um das Geschlecht, die Haarfarbe oder die Telefonnummer. Feststellbar ist hier lediglich, ob zwei statistische Einheiten im Hinblick auf ein nominalskaliertes Merkmal die gleichen Ausprägungen aufweisen – d.h. ob etwa beide befragten Personen blond sind oder ob sie über unterschiedliche Haarfarben verfügen. Da es sich beim Nominalskalennivau um dasjenige Skalenniveau mit dem geringsten Informationsgehalt handelt, lassen sich mit nominalskalierten Daten nur wenige Berechnungen anstellen – so kommt etwa als Lagemaß nur der Modus in Frage, während sich Streuung, Schiefe oder Wölbung einer nominalskalierten Verteilung gar nicht bestimmen lassen.

Beispiele: Geschlecht, Kontonummer, Haarfarbe, Telefonnummer, Geschmacksrichtung…



Ordinalskalenniveau

Im Gegensatz zu nominalskalierten Daten können ordinalskalierte Daten zwar in eine natürliche Reihenfolge gebracht werden – da allerdings die Abstände zwischen den einzelnen Werten nicht quantifizierbar sind, kann mit ihnen nicht “normal gerechnet” werden, obwohl es sich auf den ersten Blick um “normale Zahlen” handelt. Das klassische Beispiel hierfür sind Schulnoten. Schulnoten weisen sowohl eine natürliche Reihenfolge (eine 1 ist besser als eine 2, eine 2 ist besser als eine 3 usw.) als auch unterschiedliche Abstände zwischen den einzelnen Werten auf (der Notenbereich der 1 umfasst den Bereich von 92% bis 100% der maximal erreichbaren Punkte, der Notenbereich der 5 dagegen den Bereich von 0% bis 49%). Aus diesem Grund sind Rechenoperationen wie etwa das Addieren oder das Subtrahieren von Noten nicht sinnvoll: Zwei “2er” ergeben keinen “4er” – und wenn man von einem “2er” einen “1er” abzieht, erhält man auch keinen “3er”. Wenn man aber Schulnoten nicht addieren (oder dividieren) kann, folgt daraus auch, dass man beispielsweise kein arithmetisches Mittel aus ihnen bilden darf – auch wenn das leider an sehr vielen Schulen konsequent falsch praktiziert wird (und damit Generationen von Schülerinnen und Schülern für die Statistik verdorben werden).

Beispiele: Schulnoten, Präferenzrangfolgen, Zufriedenheit (z.B. auf einer Skala von 1 bis 5), militärische Dienstränge…

Metrisches Skalenniveau

Metrisch skalierte Daten verfügen über eine natürliche Reihenfolge sowie auch über quantifizierbare Abstände – mit ihnen kann also ganz “normal” gerechnet werden. In vielen Lehrbüchern wird innerhalb der metrischen Skala – die häufig auch als Kardinalskala bezeichnet wird – zusätzlich noch in die Intervallskala (ohne natürlichen Nullpunkt – z.B. Temperatur in Celsius) und in die Verhältnisskala (mit natürlichem Nullpunkt – z.B. Temperatur in Kelvin) unterschieden. Für die Zwecke unserer kleinen Blogserie wird diese Unterscheidung allerdings nicht von Bedeutung sein – hier reicht es vollkommen aus, metrisch skalierte Daten als solche korrekt erkennen zu können.

Beispiele: Zeitdauer in sek, Wassertiefe in cm, Preis in Euro und Cent, Streckenlänge in mm…

(Die Unterschiede zwischen diskreten und stetigen Daten sowie zwischen häufbaren und nicht häufbaren Merkmalen, werden wir dann übrigens in den nächsten Artikeln dieser Blogserie betrachten.)

Auf- und Abwärtskompatibilität

Für die im Rahmen unserer Blogserie betrachteten statistischen Verfahren gilt, dass sie im Hinblick auf das Skalenniveau – um an dieser Stelle einmal einen Begriff aus der Informatik zu bemühen – abwärtskompatibel, nicht aber aufwärtskompatibel sind. Dies bedeutet: Verfahren, die ein niedrigeres Skalenniveau voraussetzen, können stets auch auf Daten eines höheren Skalenniveaus angewandt werden – Verfahren, die ein höheres Skalenniveau voraussetzen, dürfen dagegen nie auf Daten eines niedrigeren Skalenniveaus angewandt werden. Da beispielsweise die Bestimmung des Modus lediglich voraussetzt, dass mindestens nominalskalierte Daten vorliegen, kann der Modus (wenn die übrigen Voraussetzungen erfüllt sind) auch für ordinalskalierte und metrische Daten bestimmt werden. Auf der anderen Seite kann etwa der Median, dessen Berechnung mindestens ordinalskalierte Daten voraussetzt, nicht für nominalskalierte Daten berechnet werden – die Berechnung für metrische Daten wäre dagegen problemlos möglich.

Der „Cheat Sheet“: Übersicht der Mindestskalenniveaus

An dieser Stelle greifen wir den in den nächsten Wochen noch folgenden Blogposts in einer kurzen Übersicht schon einmal ein wenig vor: Welches Skalenniveau muss mindestens erreicht werden, um eine Grafik erstellen oder eine Berechnung durchführen zu können?

1) Lagemaße / Maße der zentralen Tendenz

Modus: Nominalskala
Median: Ordinalskala
Quartile: Ordinalskala
Quantile: Ordinalskala
Perzentile: Ordinalskala
Arithmetisches Mittel: Kardinalskala
Geometrisches Mittel: Kardinalskala
Harmonisches Mittel: Kardinalskala

2) Streuungsmaße / Dispersionsparameter

Fünf-Werte-Zusammenfassung: Ordinalskala
Interquartilsabstand: Ordinalskala
Spannweite: Kardinalskala
Varianz: Kardinalskala
Standardabweichung: Kardinalskala
Variationskoeffizient: Kardinalskala

3) Verteilungsmaße / Schiefe und Wölbung

Quartilskoeffizient der Schiefe: Ordinalskala
Momentenkoeffizient der Schiefe: Kardinalskala
Kurtosis / Exzeß: Kardinalskala

4) Grafische Darstellungsformen

Venn-Diagramm: Nominalskala
Stamm-Blatt-Diagramm: Ordinalskala
(erweiterter) Box-Whisker-Plot: Ordinalskala

5) Zusammenhangsmaße

Chi²-Test auf stochastische Unabhängigkeit: Nominalskala
Rangkorrelationskoeffizient nach Spearman: Ordinalskala
Konkordanzkoeffizient nach Kendall: Ordinalskala
Bravais-Pearson-Korrelationskoeffizient: Kardinalskala


Die hier vorgestellten Inhalte und Aufgaben sind Teil der Vorlesung “Grundlagen der Statistik” im berufsbegleitenden Bachelor-Studiengang Betriebswirtschaftslehre an der Hochschule Harz.

Autor: Christian Reinboth

Christian Reinboth ist Wirtschaftsinformatiker und einer der Mit-Gründer der HarzOptics GmbH, einem An-Institut der Hochschule Harz. Die Entwicklung und Planung umweltfreundlicher Beleuchtung sowie die statistische Datenanalyse sind wesentliche Schwerpunkte seiner Forschungs- und Lehrtätigkeit.

SchlagwörterIntervallskalaKardinalskalaNominalskalaOrdinalskalaSkalenniveauSkalenniveausStatistikVerhältnisskala

One thought on “Geometrisches Mittel Einfaches Beispiel Essay

Leave a comment

L'indirizzo email non verrà pubblicato. I campi obbligatori sono contrassegnati *